• <acronym id="splmq"><progress id="splmq"></progress></acronym><track id="splmq"><center id="splmq"><progress id="splmq"></progress></center></track>
  • <var id="splmq"><input id="splmq"></input></var><nav id="splmq"></nav>
    <output id="splmq"></output>
  • <var id="splmq"><input id="splmq"><output id="splmq"></output></input></var>
  • <nav id="splmq"><input id="splmq"></input></nav>
  • <progress id="splmq"></progress><progress id="splmq"><sub id="splmq"></sub></progress><progress id="splmq"><sub id="splmq"><font id="splmq"></font></sub></progress>
  • <progress id="splmq"></progress><progress id="splmq"><sub id="splmq"></sub></progress><var id="splmq"></var><track id="splmq"><center id="splmq"></center></track>
  • <progress id="splmq"><sub id="splmq"></sub></progress> <tbody id="splmq"></tbody>
    <nav id="splmq"></nav>
  • <var id="splmq"></var>
  • <var id="splmq"></var><var id="splmq"></var>
  • <nav id="splmq"><font id="splmq"></font></nav>
    <progress id="splmq"><sub id="splmq"></sub></progress>
    <var id="splmq"></var>

    天體物理研究所

    天體物理研究所

    天體物理所成立于2013年,現有成員11人。研究所成員完成、承擔多項國家、湖北省自然科學基金。   主要研究方向:引力波天文學、星系和塵埃演化、高能天體物理觀測研究、中子星天體物理等。天物物理所為湖北省天文學會天體物理活動中心在湖北第二師范學院的聯系單位。北京師范大學天文系“長江學者”朱宗宏教授為本所特聘教授。


    天物物理研究所研究方向


    引力波天文學(范錫龍 肖明)

    引力波是愛因斯坦廣義相對論的預言。即將到來的引力波探測將開啟一個全新的天文學時代。引力波和射電、微波、紅外、光學、紫外、X-射線、伽馬射線等傳統天文觀測手段一起構建多信使天文學。    聯合電磁-引力波觀測將深入的揭示大量的天物理現象的性質。例如,雙中子星或者中子星-黑洞并合發射的引力波攜帶的信息可以解答伽馬射線中心能量的謎題。我們正在構建一個新的Bayesian途徑研究多信使天文學的方法及其具體應用。

    One  hundred years after Einstein’s prediction of gravitational waves  derived by the General Theory of Relativity, the detection of  gravitational waves in the near future will herald a new era of  astronomy, the mutili-message astronomy, together with other traditional  astronomy observations at radio, microwave, infrared, optical,  ultraviolet, X-ray and gamma-ray wavelengths and by astrophysical  neutrinos. 

    Joint EM-GW observations will provide deep insight  into the astrophysics of a vast range of astronomical phenomena.  Gravitational waves from the merger of two neutron stars or a neutron  star with a black hole will carry information about the internal  structure of the neutron star, and might reveal the mystery of central  engine of certain types of gamma-ray bursts, the brightest astronomical  events in the electromagnetic spectrum. A new Bayesian approach to  multi-messenger astronomy and its Implementations are under  construction.

    星系和塵埃演化 (范錫龍 李志浩 祁紅艷)

    星系形成和演化是天體物理最有趣的研究領域之一。 星系的金屬豐度和化學元素豐度比能很好的限制星系的形成歷史,揭秘星系演化的路徑。星系的能量譜分布攜帶星系最直接的觀測信息。這些信息和星族合成模型一起,可以作為估算星系質量、恒星形成率、星族年齡的星系特性的探針。

    塵埃在天體物理研究中處于非常重要的地位。 任何成功的星系化學演化、星系能量譜分布演化都需要包括塵埃演化或者至少考慮塵埃的某些效應,例如塵埃消光。塵埃產生源、塵埃光學特性及其隨紅移的演化等研究將在諸如星系形成中的氣體如何冷等過程起到重要作用。

    Galaxy  formation and evolution is one of the most interesting topics in  Astrophysics. The chemical abundance and abundance ratios make a strict  constraint on the star formation history of galaxies, therefore on the  galaxy evolution framework. 

    The SED information of galaxies are  the most directly observational information, which have been used to  constrain galaxy parameters, such as stellar masses, SFRs, and stellar  population ages, via comparison with simple stellar population synthesis  models. 

    Dust plays a unique and increasing important role in  Astrophysics. Any successful galactic chemical and SED model should  include the dust or at least take into account the dust effects, like  the extinction. The dust sources, properties and evolution as a function  of redshift are more and more interesting with increasing high redshift  dusty data and the flourish studies on cosmology, given the important  role of dust in some physical processes, such as gas cooling in galaxy  formation.

    高能天體物理觀測研究 (操小鳳 王世芳 范錫龍)

    主要包括X射線雙星(包括中子星雙星和黑洞雙星)和伽瑪射線暴兩個研究方向。X射線雙星是由一個致密星(中子星或黑洞)和一個普通的恒星組成的雙星系統。恒星的物質被致密星吸積在其周圍形成吸積盤,發出X射線輻射。通過對X射線時變和能譜的分析,可研究吸積盤的動力學、致密星附近的廣義相對論效應以及限制中子星的物態等。伽瑪射線暴是宇宙中最為劇烈的爆發現象,通常認為主要起源于大質量恒星的核心塌縮或雙致密星系統的并合。通過對伽瑪暴瞬時輻射和余輝的模擬,可以揭示致密天體的能量釋放機制、噴流加速機制以及輻射機制等。對伽瑪暴空間分布的研究,還有助于對宇宙演化的認識和對引力波輻射的探測。


    X-ray  binaries consist of a compact star (neutron star or black hole) and a  normal star. By accreting materials from the normal star, a disk forms  around the compact star, which could produce X-ray emission. By  analyzing the variability and spectrum of the X-ray emission, we can  explore the dynamics of the accretion, the gravitational effects around  the compact star, and the equation of state of neutron stars. Gamma-ray  bursts (GRBs) are the most violent explosions in the universe, which are  widely considered to originate from core-collapse of massive stars or  merger of double compact stars. By modeling the prompt and afterglow  emission of GRBs, we can reveal the energy release mechanism of compact  objects, the acceleration processes of jets, and radiation mechanisms of  plasma. The researches on the spatial distribution of GRBs may also be  able to promote the study of the evolution of the universe and the  detection of gravitational waves.


    中子星天體物理(皮春梅 劉明 肖飛)

    致密星是恒星塌縮形成的一類致密天體,由于具有極端的物理條件,是物理學研究最好的宇宙實驗室。關于致密星內部物質成分、星體結構、磁場、熱演化等都是熱門課題。隨著天文學的發展,越來越豐富的觀測數據和各種令人振奮的新現象不斷涌現,我們能更有效地限制和檢驗物理理論對致密星內部的窺視和預測,從而深刻地理解致密星結構和演化。


    Compact  stars are born in stellar gravitational collapse. The extreme physical  conditions make such stars superb astrophysical laboratories for a broad  range of exciting physical studies. The internal components, structure,  the magnetic fields and the thermal evolution of compact stars are hot  tops in astrophysics. With the development of the pulsar astronomy, more  and more new observation phenomenon are constantly emerging,which can be used to limit and examine the relevant physical theory about the interior and the evolution of compact stars.


    天天射天天草夜夜干2018